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Stochastic text generation

By J o n Oberlander an d Chris Br ew

Human Communication Research Centre, Division of Informatics,
University of Edinburgh, Edinburgh EH8 9LW, UK

Natural language generation systems must achieve ®uency goals, as well as ­ delity
goals. Fluency helps make systems more usable by, for instance, producing language
that is easier for people to process, or which engenders a positive evaluation of the
system. Using very simple examples, we have explored one way to achieve speci­ c
®uency goals. These goals are stated as norms on `macroscopic’ properties of the text
as a whole, rather than on individual words or sentences. Such properties are hard to
accommodate within a conventional architecture. One solution is a two-component
architecture, which permits independent variation of the components, either or both
of which can be stochastic.

Keywords: natural language generation; statistical methods;
maximum-entropy modelling

1. Introduction: generation and understanding

Natural language generation (NLG) research aims at systems that produce coherent
natural language text from an underlying representation of knowledge. Systems must
produce language|single sentences or more complex discourses|which (i) faithfully
represents the relevant knowledge, and also (ii) do this in a natural sounding way.
These have been termed the ­ delity and ®uency goals, respectively (Ward 1993).
The ®uency goal leads to important di¬erences between research in NLG and that
in natural language understanding (NLU).

An NLU system has to recover meaning representations from input strings of
text or speech. Whether or not a given string sounds natural, elegant, or forceful is
immaterial. What matters is that an NLU system should be able to extract some
meaning, and that the meaning should correspond as closely as possible to that
intended by the string’s speaker or writer.

At one level, NLG can be characterized as the inverse of this process. The system
has to recover strings of text or speech from input meaning representations. It has
therefore been argued that it should be possible to develop representations and pro-
cesses that are reversible, and can thus be used for both NLU and NLG (Shieber
1988, 1993). However, the ®uency goal introduces problems speci­ c to NLG that are
of relatively little signi­ cance in NLU. McDonald (1993) put it in the following way.

Existing comprehension systems as a rule extract considerably less infor-
mation from a text than a generator must appreciate in generating one.
Examples include the reasons why a given word or syntactic construc-
tion is used rather than an alternative, what constitutes the style and
rhetoric appropriate to a given genre and situation, or why information
is clustered in one pattern of sentences rather than another.

Phil. Trans. R. Soc. Lond. A (2000) 358, 1373{1387

1373

c 2000 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1374 J. Oberlander and C. Brew

In other words, there are many sets of surface strings that are equivalent, as far as an
NLU system is concerned, but distinct as far as an NLG system is concerned. NLU
systems could, in principle, distinguish elements in the equivalence sets. However, if
they do, they will be reasoning under uncertainty, and this price does not seem worth
paying, since identifying the style of a paragraph of text is of much less immediate
use than identifying its propositional content.

It might be accepted that NLG systems must aim at naturalistic output, but
argued that it is perfectly satisfactory if their ®uency falls far short of human stan-
dards. For instance, telephone users trying to book airline tickets might prefer to
have an e¯ cient, `unnatural’ dialogue with something that is obviously a machine,
rather than have to endure a polite, helpful and more `natural’ dialogue generated
by a machine that was trying to pass the Turing test. If this is so, then the additional
complications introduced by the ®uency goal can be largely sidestepped by practical
NLG systems.

However, the problems of ®uency cannot be so easily ignored. In x 2, we discuss two
kinds of ®uency-related goal, and argue that achieving these goals is advantageous
from a usability engineering perspective. In x 3, the focus is then on two particular
textual properties related to these ®uency goals: the distribution of sentence lengths,
and vocabulary diversity. These properties apply to a text as a whole, rather than to
individual words or sentences. As a result, x 4 presents a general system architecture
that allows such properties to be independently varied.

2. Two kinds of desirable generation behaviour

People have expectations about the ways in which other people will talk. They also
have personalities, which in®uence the ways in which they prefer to talk, and be
talked to. In this section, we will argue that facts like these have signi­ cant implica-
tions for the design of practical generation systems.

(a) Syntax and the maximization of expectedness

Psycholinguists have noted that people often appear to use more words in their
utterances than are strictly necessary. On the one hand, according to Grice’s maxims
of quantity and quality (Grice 1989), a speaker will attempt to optimize their utter-
ance, making it as brief as possible, while still accurately distinguishing the intended
meaning from any other candidates. Departures from the optimally e¯ cient utter-
ance will lead to their hearer deploying inferential e¬ort, to calculate what further
information the speaker meant to convey; the considerate speaker will, therefore,
select the content and form of their utterance, so as to avoid suggesting such false
or misleading inferences (Joshi 1982). For example, consider a situation containing
three animals: one small white cat and two dogs, one large and black, and the other
small and white. It is usually assumed that an optimal description of the ­ rst dog
is either `the large dog ’ or `the black dog ’, whereas `the large black dog ’ will be sub-
optimal, since it contains two adjectives where one will do; it su¬ers from a degree
of redundancy (Dale 1992; Reiter 1990).

On the other hand, there is substantial psycholinguistic evidence that the behav-
iour of human speakers involves the production of non-minimal utterances, and their
hearers expect this behaviour. Thus, `the large black dog ’ may after all be the way
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Stochastic text generation 1375

the majority of speakers choose to describe the situation above (cf. Levelt (1989) for
a survey). Conversely, hearers do not expect speakers to produce optimal, minimized
utterances; in fact, such an unexpected utterance would provoke its hearer to search
for reasons for its speaker’s failure to use an expected utterance.

The expectation of non-minimality has implications for several areas of NLG. Let
us consider two by way of example: the selection of referring expressions; and the
aggregation together of sentences containing common elements.

First, Dale & Reiter (1995) discussed the former, focusing on the case of de­ nite
noun phrases (NPs). They propose that both people and NLG systems should strive
to produce the most expected utterance, if they are to avoid unwanted implicatures.
Elsewhere, we have argued that this notion of `expected utterance’ is not with-
out its problems (Oberlander 1998). However, for current purposes, we can observe
that one way of ensuring that an NLG system generates more expected utterances
(and fewer unexpected ones) is to have it prefer to generate texts containing NPs
with a distribution of lengths similar to that found in a relevant corpus of language
use.

Secondly, the process of aggregation is often required in NLG systems that map a
given set of propositions into a set of independent clauses. As Meteer (1992) has
noted, such an approach avoids certain di¯ culties by ensuring a perfect match
between what the system chooses to say, and the means available for saying it.
However, if Sue met John yesterday, and also met Jane, such a simple system could
express this as `Sue met John. Sue met Jane.’, but not as `Sue met John and Jane ’.
Some of these systems therefore exploit aggregation to allow the derivation of the
latter, under speci­ c circumstances. In the current context, aggregation can be seen
as a method for restoring naturalness to utterances: it converts a set of minimal,
unexpected sentences into a set of less minimal, more expected sentences. In gross
terms, it leads to fewer, longer sentences; more precisely, it leads to fewer sentences,
more varied in length. By analogy with the NP case, it can, therefore, be seen that
a further way of ensuring that an NLG system generates more expected utterances
(and fewer unexpected ones) is to have it prefer to generate texts containing sen-
tences with a distribution of lengths similar to that found in a relevant corpus of
language use.

The di¯ culty for existing approaches to NLG is that sentence length is an emergent
property of many low-level decisions. Once it is decided that sentence lengths should
be distributed in a certain fashion, we have stipulated a global textual target, whose
attainment does not follow from any individual lower-level decision.

(b) Personality and the maximization of user satisfaction

Researchers in personality psychology have investigated the extent to which peo-
ple’s visual appearance and non-verbal behaviour can create impressions in other
people in considerable detail. Much of this work is based on the `big-­ ve’ theory,
which sees the most signi­ cant personality dimensions as extroversion (or domi-
nance versus submissiveness), a¬ection (warmth versus coldness), conscientiousness
(competence versus incompetence), neuroticism (anxiousness versus relaxation), and
openness to experience (liberalism versus conservativism) (Pervin & John 1996). In
this paradigm, it has been found, for instance, that relative facial maturity creates
impressions of competence and dominance (Berry 1991), and, more generally, that
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non-verbal information can allow external judges to give subjects scores on some of
the dimensions that correlate well with the subjects’ self-assessments, and those of
their friends (Borkenau & Liebler 1992).

It has often been assumed that non-verbal information has a greater e¬ect on
impression formation than verbal information; partly as a result, verbal correlates
of personality have been investigated somewhat less. However, it has recently been
demonstrated that for perceived personality features such as competence and domi-
nance, verbal behaviour has at least as strong an in®uence as non-verbal behaviour
(Berry et al . 1997). In fact, a substantial amount of work has been carried out on
language variables supposed to relate to gender (Lako¬ 1975; Newcombe & Arnko¬
1979) or power; these include the use of tag questions, hedge expressions, and indi-
rect speech acts. Although the results on some of those language variables have been
mixed, it has consistently been found that certain simple measures of a speaker’s
vocabulary diversity correlate well with their perceived dominance and competence
(Bradac 1990; Bradac et al . 1988). In particular, a speaker’s type-to-token ratio
(TTR) is directly related to their perceived competence (so long as the ratio is cal-
culated in a way that controls for the length of their discourse).

The reason why personal style is an issue for NLG is that Moon & Nass (1996)
have shown that a computer user prefers to work with a computer whose natural
language messages have been designed to project personality parameters similar to
the user’s own. In particular, it was found that dominant-type users prefer computers
using dominant-type language (here, the absence of hedge expressions); submissive
users prefer computers using language like their own. As Reeves & Nass (1996) have
emphasized, preference a¬ects both subjective satisfaction, and the user’s estimates
of the computer’s speed, e¯ ciency and design.

The lesson for NLG then follows: it may be well worth the trouble of controlling
output language so as to project a personality that matches the user’s. Unfortunately,
as with the maximization of expectedness, the projection of personality via TTR
control merely establishes a target, without specifying any method for attaining it.

3. Fluency goals in text generation

Expectedness and personality issues are no doubt related to each other, and to other
facets of ®uency in natural language. However, for current purposes, there are two
common factors. First, meeting the goals of achieving expectedness and project-
ing a personality are worthwhile engineering objectives, since they help avoid false
implicatures|and, hence, reader e¬ort|and they should improve user satisfaction.
Secondly, they involve properties of the text as a whole. In this section, we inves-
tigate in further detail the concrete examples of sentence length and vocabulary
diversity. Obviously, these do not re®ect the full complexity of either expectedness
or personality; however, they serve to e¬ectively illuminate the broader issues.

(a) Sentence length

The ­ rst example is very simple: we stipulate that NLG systems should be able to
control sentence length, producing sentences that are neither too short nor too long.
This is a condition on the distribution of sentence lengths.

Sentence length is not always a useful criterion for discriminating between the
work of di¬erent human authors. Mosteller & Wallace (1984) report a study by
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Table 1. Summary statistics for sentence length

author 2 2 (binomial)

Shakespeare 13.17 326.83 186.645

Twain 16.50 214.83 288.62

Lambs’ 32.09 753.93 1061.53

Shakespeare (trigram) 13.23 286.56 188.32

Twain (trigram) 16.09 195.90 274.82

Lambs’ (trigram) 32.07 901.337 1060.41

Shakespeare (bigram) 13.16 265.37 186.227

Twain (bigram) 16.32 209.47 295.49

Lambs’ (bigram) 31.80 906.82 1043.14

Shakespeare (unigram) 12.85 174.68 178.09

Twain (unigram) 16.48 272.43 288.36

Lambs’ (unigram) 30.50 955.98 960.50

Mosteller and Williams that conclusively demonstrates that it is not able to discrim-
inate between the writings of Hamilton and of Madison in the Federalist papers.
Nonetheless, some authors do di¬er from one another. To see how, we take Mark
Twain’s Tom Sawyer, Shakespeare’s Henry V and Charles and Mary Lamb’s Tales
from Shakespeare, tokenize them, and measure sentence length.

The results are shown in the ­ rst three lines of table 1. The second column gives the
mean sentence length, the third the empirical variance, and the fourth the variance
that would be expected if the text had been produced by a binomial process (from
which it would follow that the distribution of sentence lengths was geometric). Note
that the means are very di¬erent from each other, and that Shakespeare’s sentence
length has higher variance than that of the corresponding binomial process, whereas
the other authors use a narrower range of sentence lengths.

The next step, for current purposes, is to understand more about the properties
of sentence length. It is known that text generated by sampling from simple n-gram
models of text preserves some subjective impression of authorial style (Dewdney
1990). Sampling from a kth-order Markov model also preserves the expected fre-
quency of all n-grams of order k or lower, but it is not obvious that this will be
su¯ cient to capture sentence length. Table 1 lists means and variances for sentence
length in 100 000-word samples of trigram, bigram and unigram approximations to
the text produced by Twain, Shakespeare and the Lambs.y As the order of the
Markov approximation decreases, the approximation to the sentence-length distri-
bution becomes less exact. As a comparison, we quote the theoretically expected
variance for a binomial distribution with the empirical mean. Both the bigram mod-
els and the trigram models capture regularities in the author’s use of sentence length.
Table 2 shows examples of the output.

y These are representative runs of the trigram, bigram and unigram simulations. The simulations were
replicated several times with similar results. For the bigram and trigram simulations the implementation
of the shaney generator from Kernighan & Pike (1999) was used. For the unigram distribution we used
our own implementation.
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Table 2. Samples from models of Shakespeare’s Henry V.

source text

Shakespeare , armed in their stings , Make boot upon the summer ’ s velvet buds ,
Which pillage they with merry march bring home To the tent { royal
of their emperor ; Who , busied in his majesty , surveys The singing
masons building roofs of gold , The civil citizens kneading up the honey
, The poor mechanic porters crowding in Their heavy burdens at his
narrow gate , The sad - ey ’ d justice , with his surly hum , Delivering
o ’ er to executors pale The lazy yawning drone .

Trigram HENRY . We are in God ’ s peace ! I have an excellent armour ; but in
loving me you should love the lovely bully . What men have defeated
the law ; Who when they were as cold as any ’ s ambition ! He was
thinking of civil wars when he was a merry message . KING HENRY .
Thou dost thy o± ce fairly . Turn head and stop pursuit ; for we hear
Your greeting is from him , you men of mould . Abate thy rage , abate
thy manly rage ; Abate thy rage ,

Bigram retreat . By my hand into the clouds , as cold as any military man in
divers functions , Setting endeavour in continual motion ; To - morrow
is Saint Crispian . He trots the air , a subject for a sovereign ’ s ambition
! He was thinking of civil wars when he speaks , The King hath heard
that men of mould . Abate thy rage . Use lenity , sweet chuck . NYM .
They know your worthiness . My liege , as you shall read that my Nell
is dead i ’ faith , my cousin Su® olk

Unigram great , , of . and nothing Who than ; , ; they gentleman ecus . that Till
Britaine of Where Salisbury even about unprovided that sum Gainst .
behind serve a it o® end perdurable ; friends sort spirit whereof them
English me mouth not Would thy put of peers civil ’ pasture our READ-
ABLE the d , ? madame if that Isabel DAUPHIN need widow KING a
shall ’ like . wonderful he The Southampton ? the Consideration terre
Hugh an snatchers is ’ keep repose IS Exeunt ry , mothers inward was
words are BOY another I , Europe

The trigram and bigram models sometimes have no choice but to produce verbatim
copies of parts of the text on which they are based, as can be seen in the multiple
occurrences of `was thinking of civil wars when he’. Nonetheless, some ®exibility
remains, and this fact will be exploited in due course.

Against this background, the key question is: how could a system achieve (or at
least approach) a stipulated sentence-length distribution in generated text? Notice
that the distribution will typically be that of a given target text, but nothing hinges
on this.

Clearly, it is possible to impose Twain’s sentence-length distribution on Shake-
speare’s text, by deleting all Shakespeare’s sentence boundary markers, and running
the result through a program that stochastically adds punctuation in the propor-
tions used by Twain. But this brute-force approach is inappropriate, because nothing
prevents sentence boundaries from being added in places where Shakespeare’s text
cannot support them.
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A more realistic technique can be framed in the following terms. For the sake of
argument, we will assume an architecture in which the output of a conventional NLG
system is reviewed by a separate component responsible for sentence length. Call the
­ rst component the author and the second the reviewer. Various issues then arise as
the author and the reviewer attempt to collaborate to produce a mutually acceptable
version.

Firstly, sentence length is typically an emergent property of a large number of
authorial decisions, few of which are based solely on stylistic considerations. The
reviewer can indicate that a particular sentence is the wrong length, but it falls
to the author to implement any change. The author’s repertoire may not include
a version of the sentence that changes the length while preserving propositional
content and still meeting other authorial goals. In this case, the author may have
an invidious choice to make. Even when an appropriate alternative version is in the
author’s repertoire, it may be a challenging task to ­ nd the parts of the authorial
decision-making process that it would be most appropriate to modify. Without a
principled means of doing this, the author is going to struggle to meet the reviewer’s
objections.

Secondly, the distribution of sentence length is itself an emergent property of a
large number of decisions about the lengths of individual sentences. The reviewer may
criticize the author’s sentence-length pro­ le without attributing blame to particular
individual sentences. It now falls to the author to select and modify sentences|
to aggregate them, in traditional NLG terms|so as to adjust the sentence-length
distribution. In general, the di¯ culty that the author faces is that of reducing a
target for a macroscopic property of the text to a prescription for change at the level
of individual authorial decisions.

To take a physical analogy, the sentence-length distribution is like the temperature
of a gas, while the length of an individual sentence is like the speed of a molecule
within that gas. Just as knowledge of the temperature of a gas imposes little con-
straint on the speed of a particular molecule, so knowledge of the sentence-length
distribution does not, on its own, determine the length of any individual sentence.
The constraint applies to the ensemble of decisions made, not to any individual
decision.

(b) Vocabulary diversity

The second example is slightly more complex than sentence length: we stipulate
that NLG systems should be able to meet targets on vocabulary diversity. There are
several ways of presenting this, as follows.

(1) As noted earlier, in the clinical, forensic and personality literature, the vocab-
ulary diversity is often estimated using TTR. To avoid a dependency on the
size of the text sample, TTR is measured not on the whole document, but on
a series of ­ xed size bins.

(2) An allied measure (Yule 1944) is Yule’s K, which for words w with frequency
jwj, has the form:

K = 10 000

X
jwj2

X
jwj

X
jwj

2
:
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Putting aside the constant factor of 10 000, this is the probability that two
words drawn at random from the text will be identical. This will decrease as
TTR increases.

(3) Another indicator of vocabulary diversity is the distribution of the distance
between successive occurrences of the same word. One version of this calculates
inter-token distance separately for each type in the vocabulary, while another
sums over all types to produce a single ­ gure. This too will decrease as TTR
increases. Note that the distribution of sentence length is just the distribution
of the distance between successive sentence boundary markers. Sentence length
is, therefore, a special case of vocabulary diversity.

The measures listed above are sensitive to the frequency pro­ le of words within the
vocabulary, but it would make no di¬erence if each English word were systematically
replaced by a corresponding number, French word or Chinese character. So long as
tokens can be checked for equality, the measures can be obtained. Given parallel word
lists drawn from Twain and Shakespeare, it is possible to impose Twain’s vocabulary
choice on Shakespeare by replacing the nth most frequent word in Shakespeare’s
vocabulary with the nth most frequent word in Twain’s. If punctuation is passed
through unchanged, we will also have Shakespeare’s sentence-length distribution.
But the result would be gibberish, failing for the same reason as the brute-force
attempt to impose sentence-length distribution: inadequate account has been taken
of context.

4. An architecture for stochastic text generation

In the following sections we will display a general methodology for producing NLG
systems that achieve (or at least approach) goals for macroscopic properties of text.
We will do this by introducing an unconventional NLG architecture (Knight & Hatzi-
vassiloglou 1995; Langkilde & Knight 1998), which we modify to meet our needs.
Langkilde & Knight’s (1998) Nitrogen uses a probabilistic model to select among
analyses proposed by a non-deterministic generator. The system has the following
architecture.

(i) A symbolic generator capable of generating alternative answers.

(ii) A word lattice produced by the symbolic generator.

(iii) A statistical extractor capable of unpacking and evaluating alternative paths
through the word lattice.

It is worth noting the goals that Nitrogen and its successors have been set, since these
di¬er signi­ cantly from the mainstream goals of NLG. The key goal is to produce
output irrespective of the poverty of the input to the generation process. There is no
guarantee that the output will be correct, although the aim is to make it as ®uent as
possible. The generator is non-deterministic because its input comes from machine
translation and is too impoverished to completely determine the output. (It may,
for example, lack information about number and case.) The language model can be
arbitrarily sophisticated, but, to date, the reported experiments use simple n-gram
models.
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The computational problem faced by the language model is well studied, because
it arises when the input to a parser is the output of a speech recognizer. The only
di¬erence is the source of the uncertainty, which needs to be resolved. The speech
recognizer’s language model is attempting to reconstruct an utterance from a lattice
of perceptual data, whereas Nitrogen’s language model is attempting to ­ nd an
appropriate text from a word lattice produced by the underlying generator.

Nitrogen’s non-deterministic generator is purely possibilistic, and, in current terms,
plays the role of the author, while a language model plays the role of the reviewer.
Signi­ cantly, however, instead of passing a single text to the reviewer, the author
passes a lattice representing a very large space of possibilities. Instead of sending back
requests for revision, the reviewer can simply choose the best of the available alter-
natives, secure in the knowledge that all of these are at least marginally acceptable
to the author. The preferences of the reviewer still predominate. Strong authorial
preferences will still be overridden, even on the basis of very small di¬erences in the
reviewer’s language model. But this property is not essential, since nothing hinges
on the fact that the author is purely possibilistic. For our purposes, what matters is
Nitrogen’s clear separation between the roles of the author and the reviewer.

(a) An architecture for imposing a sentence-length distribution

Consider a variation of the Nitrogen framework in which both author and reviewer
are modelled by stochastic processes. The author is a trigram model built from
text by Shakespeare, while the reviewer is a statistical model of the sentence-length
distribution occurring in the same text. For the latter component, one could use:
a binomial; Katz’s K mixture (Katz 1996); a negative binomial (Church & Gale
1995); or any other convenient distribution. The lattice produced by the author
contains, as before, only paths that are at least minimally acceptable to the author,
but these paths are now annotated with weights derived from the trigram model.
Quasi-Shakespearean text with a quasi-Shakespearean sentence-length distribution
can be generated by allowing the reviewer to choose a high-scoring path through
the lattice of alternatives provided by the author. Every path will be drawn from
Shakespeare’s trigram model, but the choice is up to the reviewer.

We can vary author and reviewer independently. So we could impose Twain’s
sentence-length preferences on Shakespeare’s trigram source, or vice versa. This tech-
nique is gentler than the naive approaches presented earlier, because the output will
contain only trigrams represented in the original source. Conversely, unless the tri-
gram lattice contains a su¯ cient choice of paths, it may not be possible to match
the reviewer’s sentence-length norms as closely as would be possible with the more
brutal methods.

Standard techniques for ­ nding paths through weighted lattices|as detailed, for
example, in Jelinek’s (1997) textbook|are applicable to the reviewer’s path-decoding
task. But the reviewer must decide the logically prior question of how to combine the
weights provided by the author with the preferences arising from the sentence-length
model. An obvious answer is to use a linear combination between the weights of the
two models,

P (s1 ! s2) = Pau th or(s1 ! s2) + (1 )Previewer(s1 ! s2);

where is an adjustable parameter. Extreme values will allow either of the two
component distributions to be used to the exclusion of the other.
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i ii iii iv v vi vii viii ix x xi : : :
window onto a text . This is the window which is : : :

1 2 3 4 5 6 7 8 1 9 7 : : :

Figure 1. Labelling items in a bin.

(b) An architecture for imposing vocabulary diversity

The general architecture developed for imposing sentence length applies to the
more complex task of imposing a pattern of vocabulary diversity. The original for-
mulation of the author as a trigram source stays in place, but the shift of focus from
sentence length to vocabulary diversity entails that the simple distribution used by
the reviewer must be replaced by something more elaborate. Because the sentence-
length distribution is a special case of the distribution of inter-token distance, the
more elaborate techniques can also be used for the simpler problem. This is appro-
priate, because the focus on sentence length to the exclusion of other factors was an
idealization. In the real world, multiple authorial goals compete to be satis­ ed, and
the techniques developed in this section are designed to deal with this situation.

We begin by making precise the aim of this section. The aim is to simulate the
distribution of inter-token distance produced by a particular author. This can be done
by ­ rst de­ ning a set of features that are su¯ cient to capture the salient features of
distribution, and then incorporating these features into maximum-entropy models.
Standard maximum-entropy techniques for carrying out feature selection and weight
estimation (Berger et al . 1996; Della Pietra et al . 1997; Rosenfeld, this issue) are
assumed. The merit of these techniques is exactly that they are standard, requiring
from the user only the de­ nition of an appropriate space of possible features.

The TTR is calculated over 25-word bins. The TTR will be less than 1 only when
the bin contains repeated words. Starting from the left of the bin, label words as they
appear, giving each word type a distinct label. This process is illustrated in ­ gure 1.
The representation in the third line is su¯ cient to calculate all the measures of
vocabulary diversity, but does not mention individual words, so will abstract away
from the vocabulary choices of a particular author. A set of features can be de­ ned
over that representation. As is usual with maximum-entropy models, the intention is
not to preselect appropriate features, but to de­ ne a large set of features, su¯ cient
to cover the intended regularities, and then to delegate feature selection and model
building to standard algorithms.

Suitable features are de­ ned by the following predicate templates.

(i) The label I appears at position p.

(ii) Positions p and q carry the same label.

(iii) Positions p and q are both labelled with I .

(iv) The label I is repeated, with an inter-token distance of d.

The motivation for these features is to ­ nd attributes that can be measured for one
author but applied to the output of another. Both the features and the representation
underlying them are open to revision. In particular, it might be better not to relabel
punctuation symbols or common closed-class words, which play a role di¬erent from
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those of content words. Since every author uses these symbols, it will still be possible
to apply the results of training on one author to the evaluation of another.

A maximum-entropy model of Shakespeare’s vocabulary diversity can be created
by grouping the text into 25-word bins, carrying out the relabelling process, and
counting relevant events as they occur within the bins. Similar models for Twain,
the Lambs, or groups of writers can be created. Given the usual precautions against
over-­ tting, the maximum-entropy algorithms will build each model based on a lim-
ited set of important features. This model can then play the part of the reviewer
in the architecture that was outlined in the previous section. It is therefore pos-
sible to impose one author’s vocabulary pro­ le on another’s text, in a principled
fashion.

(c) Further macroscopic properties

Maximum-entropy modelling is a powerful general technique. It has the crucial
advantage of being able to handle situations in which the features used are not inde-
pendent. Because TTR and the other measures of vocabulary diversity are properties
of the con­ guration of elements within the bin, and cannot be simply ascribed to the
e¬ect of any individual choice by a binomial or multinomial process, the maximum-
entropy approach is warranted by our application. But the key point is that in this
respect the TTR measure is representative of a large class of macroscopic properties
of text for which we may wish NLG systems to respect speci­ ed norms.

First consider those properties relevant to the achievement of `expectedness’ goals.
To make a text easy to process and free of misleading structures, it is certainly not
su¯ cient simply to meet a target for sentence length. In the earlier discussion of
expectedness, at least one other target was introduced|the distribution of noun
phrase lengths|and it is easy to see how a treatment of this feature might follow
that for sentence lengths. However, there are many other factors that are associated
with readers’ expectations, and, very often, they ®ow from the type of interaction
between author (or speaker) and reader (or hearer). Biber (1986) proposes a num-
ber of linguistic factors that are associated with signi­ cant di¬erences between one
genre of language and another. His `abstract versus situated content’ dimension, for
instance, opposes language containing more nominalizations, prepositions, agentless
passives or `it’-clefts with that containing more place and time adverbs, relative
pronoun deletion or subordinator-`that ’ deletion. Indeed, such genres create expec-
tations in readers, and often these expectations concern a particular group style.
There has been computational work on the achievement of stylistic goals in text (cf.
Danlos 1987; Hovy 1988), and this has isolated a number of syntactic patterns that
contribute to stylistic goals (DiMarco & Hirst 1993). The patterns are described in
terms of balance, dominance and position, and the goals in terms of clarity versus
obscurity, concreteness versus abstraction, and staticness versus dynamism. DiMarco
& Hirst (1993) supply a stylistic classi­ cation of primitive elements (such as adjecti-
vals and adverbials), which, given a set of grammar rules, have e¬ects contributing to
the higher-level patterns and goals. This work therefore represents a plausible source
of features for training a maximum-entropy model.

Secondly, turning to personality issues, it is again clear that TTRs represent only
the tip of a linguistic iceberg. Unlike style, there has been little computational work
on creating favourable personality impressions, and it is true that psychologists have
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devoted more attention to non-verbal factors in®uencing impression formation. How-
ever, enough has been discovered about relevant linguistic factors to begin to explore
their incorporation in a maximum-entropy model. Taking just the work of Berry et
al . (1997), further factors include the frequencies of adjectives denoting negative and
positive emotions; propositional attitude verbs; self-referents; negations; and present
versus past tense. In addition, it is generally accepted that overall word count is
associated with perceived dominance, as is the avoidance of tag questions and hedge
expressions.

5. Conclusion

We have argued that NLG systems need to be able to achieve ®uency goals, as
well as ­ delity goals. Undoubtedly, it is important that they faithfully represent
relevant knowledge. However, from the point of view of usability engineering, it
is also important that they produce language that is easy for people to process,
and which engenders a positive evaluation of the system itself. Using very simple
examples, we have explored one way of achieving ®uency goals. Because the goals
are stated as norms on macroscopic properties of the text, the system architecture
must allow such norms to be stated, and that a clear mechanism must be provided
whereby macroscopic properties can emerge from ensembles of microscopic deci-
sions. We have suggested a revision of the Nitrogen architecture as a model of what
is needed in such systems. Because our examples have been highly idealized, there
is an open question about the feasibility of our approach as a means for generating
useful text.

We have used a Markov trigram generator as a stand-in for the author, and empha-
sized the fact that a second supervisory component takes the responsibility for select-
ing between its outputs, and for deciding to what extent its expressed preferences
will be respected. This is not to insist that the Markov generator is appropriate
technology. However, it does appear desirable to continue to use a separate super-
visory component, together with a non-deterministic generator, albeit one that is
more elaborate than the Markov generator. Like any conventional NLG system, this
non-deterministic generator must have an authorial repertoire wide enough to cover
the ideas that it needs to express and the situations in which it has to express them.
But, crucially, it does not have to fully understand the conditions under which the
use of particular options and combinations of options are appropriate, since that task
is delegated to the reviewer.

One dimension of variation worth exploring in future work is the complexity of
the communications medium shared by author and reviewer. The proposed use of
a weighted word lattice will probably be too limiting. On the one hand, were we
to move to an unconstrained blackboard architecture, the bene­ ts of the existing
modularization of the system would be at risk. On the other hand, in unpublished
work, Langkilde has already proposed an extended Nitrogen architecture in which
the two components share access to a probabilistically annotated parse forest. This
allows the authorial component to provide the reviewer with more information about
the structure of the space of possibilities that it has considered.

Finally, by incorporating stylistic features already proposed within the NLG liter-
ature, stochastic systems o¬er a novel approach to the task of generating genuinely
®uent language.
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Discussion

N. Nicolov (University of Sussex, Brighton, UK ). I like the separation of `author’
and `reviewer’ functions in your model. But do you not run into problems of requiring
an exponentially large volume of text to be generated by the author for review? Could
the reviewing function perhaps be integrated into the generator, so as to reduce the
volume of generated text?

J. Oberlander. Running the generator iteratively to generate all possible texts
is certainly not feasible. This is why we have proposed word lattices as an alterna-
tive, though this still means a lot of work. However, I would resist any proposal to
reintegrate the reviewer with the generator because we like the idea of a language-
independent reviewer. We want to explore what the separation of these two functions
will bring us.

R. Rosenfeld (Carnegie Mellon University, Pittsburgh, PA, USA). I too liked your
separation of author and reviewer functions, and would like to see how far you can
push it. Your generator is a trigram model, have you considered how you can produce
meaningful text and edit it further?

J. Oberlander. One possibility would be to use a template-based generator and
smooth its output. Perhaps we could use the Nitrogen model and add our stochastic
evaluator onto the end of that to ensure that the macroscopic text properties we
want are preserved.

K. R. McKeown (Columbia University, New York, USA). My question is similar
to Roni Rosenfeld’s. Your work is the ­ rst to introduce a stochastic element into
natural language generation. But it looks like a swing from the purely symbolic to
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the purely statistical. Langkilde’s work, which you cite, tries to push grammar to a
minimum, but at the cost of ignoring the large amount of good work on producing
large-scale grammars for generation. How can you connect more with symbolic work
in order to get a better balance?

J. Oberlander. We agree that the work on large-scale grammars, which serve
­ delity goals, should not be ignored, and while we wish to push the stochastic
approach as far as it will go, the framework here is designed to allow us to build
directly on the existing symbolic work, including, particularly, the work to date on
stylistic features of discourse. The current approach was inspired, in part, by an
observation of John Bateman’s concerning a comment made by one of the museum
curators about a particular piece of jewellery. The curator’s discourse was very ®u-
ent, and had apparently included extra content purely to satisfy ®uency goals. So,
we are here focusing on the cases where ®uency can be just as important as ­ delity.
But, ultimately, getting even these cases right will still involve the exploitation of
linguistic features uncovered in traditional symbolic approaches.

K. I. B. Sp�arck Jones (University of Cambridge, UK ). Surely this distinction
between content and form is too simplistic? After all, even reordering changes content
by changing emphasis.

J. Oberlander. Indeed, the distinction is not absolute, and nor is the division
of responsibility between author and reviewer. The form of the ­ nal text is not
simply the work of the reviewer. The set of generated texts available for review
depends on the sophistication of the lattice from which they are produced. Equally,
the content of the ­ nal text is not simply the work of the author. So, to strategically
in®uence the outcome, the clever writer must generate multiple versions which will
survive the cuts the reviewer makes. This is somewhat akin to the journalistic style
of iterative deepening, whereby a news story is written by revisiting the same topic
in progressively more detail so that it may later be cut to virtually any length by an
editor.

F. Pereira (AT & T Laboratories, Florham Park, NJ, USA). You said that you do
not want to push the critique into the generator. It is important to distinguish what
is computed (an evaluation function over generated texts) from how it is computed
(by separate modules doing text generation and evaluation). The virtue of your
architecture is that it keeps this distinction very clear, but it need not be this way.
An integration at the implementation level might yield computational e¯ ciencies
without sacri­ cing the functional model.

J. Oberlander. The short answer is `yes’ ! A longer answer, on re®ection, is that the
two modules can indeed be combined in more than one way. The obvious combination
keeps the distinction intact, but more e¯ cient combinations may require much more
complex composition. We would like to try the former ­ rst.
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